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The high linear charge density of 20-base-pair oligomers of DNA is shown to lead to a striking nonmono-
tonic dependence of the long-time self-diffusion on the concentration of DNA in low-salt conditions. This
generic nonmonotonic behavior results from the strong coupling between the electrostatic and solvent-
mediated hydrodynamic interactions, from the renormalization of these electrostatic interactions at large sepa-
rations, and specifically from the dominance of the far-field hydrodynamic interactions caused by the strong
repulsion between the DNA fragments.
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With the increasing importance of biophysics, there is a
greater overlap between the subjects of the physics of bio-
logical molecules and colloidal physics, which deals with
small particles in suspension. Many of the techniques that
have been developed in colloidal physics are directly appli-
cable to biological molecules, such as proteins, and cells.
DNA in particular is a very interesting biomolecule which
exhibits a wide range of behaviors due to its interactions
with proteins and enzymes, but also due to its physical char-
acteristics. A particular feature of DNA that is of interest to
colloidal scientists is its high linear charge density �1,2�. The
interaction energy between DNA molecules and the structure
of suspensions of DNA fragments have been shown to be
strongly affected by this charge density. Consequently, other
effects associated with a strong charge, such as electrolyte
screening, electrolyte friction, charge condensation, charge
inversion, and like-charge attraction in the presence of mul-
tivalent salt ions, have also been predicted and investigated
�3–6�. Several investigations have considered the effect on
the structure due to the renormalization of charge �2,7�. Little
work, however, has been performed on the interesting con-
sequences of a high charge on the dynamics of these
molecules.

Highly charged colloids present an entirely different para-
digm of particle interactions to the classical hard-sphere
model. Well-known features of a low-salt suspension of
charged colloids are the low osmotic compressibility of the
suspension and the fact that the mean distance between the
particles scales with the inverse of the cube root of the col-
loid concentration over a wide range of concentrations �8�.
This scaling, corresponding to the formation of a correlation
hole around the particles, leads to the domination of far-field
over near-field hydrodynamic interactions �HIs� and there-
fore to an altered dynamic behavior which is unlike that of
hard-sphere colloids.

Wilk et al. �1� have measured the long-time translational
self-diffusion coefficient DL= �D�

L+2D�
L � /3 of isotropic dis-

persions of 20-base-pair oligomers of DNA by fluorescence
correlation spectroscopy for various salt concentrations.
DNA is a suitable molecule for studying effects resulting
from electrostatic and hydrodynamic coupling due to its

large linear charge density of approximately −2e /3.4 Å. The
20-mer DNA are almost perfectly monodisperse, rigid cylin-
drical rods with length L=6.8 nm and diameter d=2 nm �as-
pect ratio of 3.4�, a bare valency of Z=−42 in neutral or
basic pH solutions, and a translational free diffusion coeffi-
cient of D0=1.07�10−6 cm2 s−1. The long-time coefficient
DL was found to have an unexpected nonmonotonic concen-
tration dependence in low-salt conditions.

In this article we describe a versatile theoretical scheme
that we have developed for the calculation of DL in colloidal
systems �3,9,10�. This scheme includes the long-range far-
field part of the HIs between the particles, which dominates
in low-salt suspensions. We will show that in combination
with colloid charge renormalization, this scheme success-
fully describes the nonmonotonic dependence of DL��� on
the macro-ion volume fraction �. This effect is of general
importance and may be observed in any dispersion of col-
loids or biomolecules where long-range repulsive interac-
tions are prevalent. The nonmonotonicity in � is unusual
since it requires a delicate interplay of HIs and electrosteric
repulsions over a sufficiently broad concentration range. In
contrast, a nonmonotonic � dependence is not uncommon
for transport properties such as the primary electroviscous
coefficient p���, associated with the suspension viscosity �
�11�, and the collective diffusion coefficient Dc �8�. More-
over, the electrophoretic mobility � �12� as well as 1 /� and
DL��=0� exhibits a minimum as a function of the electrolyte
concentration. The minimum in DL�0� is found for globular
macro-ions �9,13� and also for semiflexible charged poly-
mers as shown recently in experiments and simulations �14�.
In all cases considered, HIs play a decisive role; e.g., the
maximum of Dc��� arises from a balance of the slowing HIs
and the speed-up of density relaxations caused by the elec-
trosteric repulsion. The maximum in p��� at intermediate
salinity arises from a competition between the velocity gra-
dient inside the macro-ion double layer that grows with �
and the shrinking double-layer distortion �11�. Ignoring HIs
can lead to nonphysical results such as the failure to predict
the maximum in the electrophoretic mobility of a short poly-
electrolyte chain as a function of the monomer number
�15,16�.

Due to the increasing power of computers, substantial
progress has been made in the simulation of transport prop-
erties in non-dilute-charged colloidal dispersions. Formerly,
simulations that include the electrokinetic effect of electro-*g.naegele@fz-juelich.de
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lyte ions have been difficult due to the large asymmetry be-
tween these components, in both size and charge. These
simulations have focused largely on the challenging problem
of electrophoresis �12,17,18�, frequently used for particle
characterization, but for which a complete theory in dense
systems, in which there is strong overlap of the electrical
double layers, is still lacking. Our theoretical scheme is
therefore also presented as a significant step in developing a
versatile statistical-mechanical tool to describe the electroki-
netic transport in nondilute suspensions.

Our scheme is based on an exact memory equation for the
self-intermediate scattering function of colloids undergoing
overdamped Brownian motion. The irreducible memory
function in this equation is approximated using the idealized
mode-coupling theory for Brownian fluids, with the impor-
tant extension of including the HIs between all ionic species.
Instead of solving the mode-coupling equations fully self-
consistently, which would be a very challenging numerical
task in the presence of HIs, we use a simplified solution
scheme which retains analytical simplicity and yields only
small differences in the numerical results �19�.

According to our scheme, the long-time coefficient DL of
a nondilute suspension is given by the Stokes-Einstein-like
relation �3�

DL

D0 = �1 +
��CF

�0 +
��EF

�0 �−1

, �1�

which includes, in addition to the colloid-solvent friction
�0=6��0a, where �0 is the solvent viscosity and a the col-
loid radius, a colloid friction �CF� and an electrolyte friction
�EF�. The colloid friction arises from the micro-ion-averaged
electrosteric and HIs between the colloids, and is present
even when the micro-ion degrees of freedom are ignored. It
is given in our scheme by �3�

��CF

�0
=

n

6�2�
0

�

dk k2

�h�k� −
1

D0
hd�k��2

2 + n�h�k� +
1

D0
hd�k�� , �2�

where n is the colloid number density, h�k� is the total cor-
relation function of the colloids, hd�k� is the distinct hydro-
dynamic function of the colloids, and D0 is the free-diffusion
constant. This expression for ��CF only requires the colloid
static structure factor S�k�=1+nh�k�. Equation �2� is the
zeroth-order term in the expansion of the total long-time fric-
tion coefficient, ��=��CF+��EF, in terms of the colloid–
micro-ion mobility ratio D0 /Di

0. Equation �1� states that the
extra friction due to the fast kinetics of the mobile salt ions,
��EF, is given by the difference of the total friction coeffi-
cient and ��CF �3�. The EF is due to the noninstantaneous
relaxation of the micro-ionic atmosphere. We have derived a
simple expression for the long-time EF contribution, valid
for the case when the free-diffusion coefficients of the vari-
ous salt-ion species, Di

0, are much greater than the colloid
free-diffusion coefficient. This expression is

��EF

�0 =
2

3�2	
i=1

m

ni
D0

D0 + Di
0�

0

�

dk k2

�
�1 + nh�k��
1

D0hci
d �k� − hci�k��1 + n

1

D0hd�k��
2 + n�h�k� +

1

D0hd�k�� �
2

,

where the sum goes over all micro-ion species of number
density ni and where hci�k� and hci

d �k� are the partial total
correlation and partial distinct hydrodynamic functions be-
tween the micro-ions and colloids. The EF contribution to DL

is significant in very dilute systems, but is negligible when
the mobility difference between the colloidal spheres and the
micro-ions is large and when � is increased. The second
finding is attributed to the enhanced homogenization of the
electrolyte background with increasing � �3�.

Since the dynamic effect of the micro-ions is small, we
can simplify the problem by considering the colloids as in-
teracting with an effective pair potential. In the resulting one-
component model of weakly charged colloids, the effective
interaction between colloids of radius a and bare valency
Zbare follows the repulsive part of the Derjaguin-Landau-
Verwey-Overbeek �DLVO� potential �20�:

	u�r� = LBZbare
2 � e
a

1 + 
a
2e−
r

r
, r � 2a ,

where LB=e2 / ��kBT� is the Bjerrum length in a solvent of
dielectric constant � and 
 is the inverse Debye screening
length determined by the concentration of added salt ions
and monovalent counter-ions. In a 1:1 electrolyte solution,

2=4�LB�2ns+n�Zbare��. For strongly charged colloids where
LB�Zbare� /a�1, this potential is still suitable, but only with
the charge and screening parameter replaced by an effective
charge Zeff and screening parameter 
eff due to the conden-
sation of counter-ions near the colloid surfaces. There exist
several schemes for the calculation of these effective quanti-
ties, and these have recently been of considerable interest.
Those mostly used are the cell-model approximation of Al-
exander et al. �21� and the renormalized jellium approxima-
tion �RJA� �22�.

The RJA for the effective macro-ion charge in a closed
suspension with a fixed salt concentration, as opposed to a
system in contact with a reservoir, involves numerically solv-
ing the Poisson equation for the mean electric potential �r�
of a single colloidal sphere, surrounded by a Boltzmann-
distributed micro-ion cloud and a uniform negatively
charged background of charge density nZeff, which describes
the jellium representing the other macro-ions. The resulting
equation for the reduced potential, y�r�=	e�r�, is

�2y�r� = 4�LB�2ns sinh�y�r�� + nZeff�ey�r� − 1�� , �3�

with the boundary conditions y���=0, y����=0, and y��a�
=−LBZbare /a2. The numerical solution of Eq. �3� is asymp-
totically matched to the solution of the linearized equation
�2ylin�r�=
eff

2 ylin�r�, where 
eff is the effective screening pa-
rameter, 
eff

2 =4�LB�2ns+n�Zeff��. The effective charge comes
from the linearized solution at the inner boundary,
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ylin� �a�=−LBZeff /a2. Since the effective charge also appears in
Eq. �3�, this solution procedure must be iterated until self-
consistency in Zeff has been established �22�.

With the so-determined interaction potential, S�k� is cal-
culated using standard integral equation theories. For this
study, we use the rescaled mean spherical approximation
�RMSA� �23�, known to be a reasonably accurate theory of
the structure of charged colloids.

Equation �2� has been developed for spherically symmet-
ric particles and is therefore not directly applicable to rodlike
particles in high-salt suspensions. On the other hand, in low-
salt suspensions, as measured by Wilk et al., the microstruc-
ture is mostly determined by the long-range electrostatic
monopole term which is spherically symmetric. Therefore,
we treat the DNA fragments as spheres with an effective
radius aeff. This radius appears in the solution of the effective
charge and thus in the calculated structure factor. The largest
effect of aeff, however, is to determine the scaling used to
map the volume-fraction-dependent calculations onto the
weight-concentration-dependent measurements by c�g /L�
=3�Mw / �4�aeff

3 103NA�, where Mw=13 022 g mol−1 is the
molecular weight of the DNA fragments. The effective radius
resulting from the Stokes-Einstein relation applied to the
measured diffusion coefficient at infinite dilution is aeff
=2.0 nm. However, since the excluded volume interaction of
the effective spheres is influential at high salinity only, from
comparing our results with the high-salt measurements of
Wilk et al., we have determined aeff=3.4 nm=L /2 to provide
the best overall fit, independent of the salt concentration. An
effective radius of half the molecular length has some paral-
lels with the excluded-volume calculations of rodlike par-
ticles in the isotropic state. Since the bare charge is given by
the number of ionizable groups on the DNA molecule, aeff
=L /2 is the only adjusted parameter.

The effective charge for our model of the DNA fragments,
calculated via the RJA in a closed system as in the experi-
ment, is presented in Fig. 1. For low-salt systems, Zeff shows
a nonmonotonic dependence on �. At very low �, there is
also a nonmonotonic dependence of Zeff on the salt concen-
tration �cf. Fig. 1�, with the limit that Zeff→Zbare when n
→0 and ns→0. This zero-� nonmonotonicity of Zeff is also
seen in its expansion in terms of the bare charge Zbare. If Zbare
is sufficiently large, Zeff becomes independent of the bare
charge. This is the so-called saturated effective charge, Zeff

sat.
In our system, �ZbareLB /aeff��9, which is well into the non-

linear regime, but Zeff is less than 66% of Zeff
sat, so that satu-

ration is not yet reached. Even though the 
eff depends on
Zeff, it shows no nonmonotonic � dependence.

The measured DL of the 20-mer DNA and the comparison
with the results of our spherical model are shown in Fig. 2.
In Fig. 2�a�, we include the results of our scheme when far-
field HIs are included �solid lines� or ignored �dashed lines�,
with the values Zeff and 
eff used in both cases. The non-
monotonic dependence of DL on � in the experiments is also
seen in the theoretical predictions when HIs between the par-
ticles are included. If the HIs are ignored, DL shows a mono-
tonic � dependence, for all considered salt concentrations. In
Fig. 2�b�, a comparison is made between the theoretical re-
sults for DL, including the effects of HIs, where instead of a
�-dependent Zeff �solid lines again�, we use a fixed charge of
Z=−42 �dash-dotted lines�. For both sets of results a non-
monotonic � dependence is seen. The nonmonotonicity,
however, is much stronger when a nonconstant Zeff is used.
This suggests that the nonmonotonic � dependence of the
experimental DL results from a simultaneous interplay be-
tween the hydrodynamic enhancement caused by far-field
HIs and the nonmonotonic Zeff in low-salt systems. The
strong decline in DL at large � seen in Fig. 2 is due to
electrosteric caging, which becomes stronger with increasing
�. The single–macro-ion EF effect described in Booth’s
theory �13� cannot explain the nonmonotonicity of DL since
it is significant only for ��10−4 and ns�0.01 M �3�, which
is a salt concentration much larger than those where the
DNA-DL behaves nonmonotonically.

The hydrodynamic enhancement of the diffusion of par-
ticles repelling each other over long distances results from
the fact that the dominant far-field HIs advect neighboring
particles that may otherwise have hindered the motion of the
considered one. Near-field HIs, on the other hand, have the
opposite effect of slowing the diffusive motion. Hydrody-
namic enhancement of DL has been seen before in suspen-
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FIG. 1. �Color� Effective charge of 20-mer DNA �Zbare=−42�,
determined via the RJA, as a function of DNA and salt
concentrations.

FIG. 2. �Color� Self-diffusion coefficient DL of the DNA model
vs weight concentration for salt concentrations as indicated. Sym-
bols are experimental results taken from �1�. �a� Comparison with
theoretical results using Zeff. Solid lines are results with HIs; dashed
lines are without HIs. �b� Comparison with theoretical results with
HIs. Solid lines are again results using Zeff; dashed lines are results
with fixed charge Z=−42.
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sions of charged and magnetically interacting colloidal par-
ticles �19,24� and in simulations with HIs of charged
nanosized poly-ions �25�, but without a visible nonmono-
tonic � dependence. A nonmonotonic DL��� was found in
simulations of salt-free polyelectrolyte solutions �26�. In
these simulations, however, HIs have been neglected and the
values for DL /D0 are smaller than 0.1, which is the value
where the freezing transition of charged spheres and rods
occurs �27�.

In summary, we have shown that the nonmonotonic con-
centration dependence of DL in low-salt suspensions of DNA
fragments can be understood by the influence of far-field HIs
and charge renormalization. According to our scheme, the

nonmonotonicity of DL is a generic effect for any low-salt
suspension of strongly charged small colloids or biomol-
ecules. We have obtained this result using a simplified mode-
coupling scheme. This scheme is a marked improvement on
previous methods, since its many-component version in-
cludes the far-field HIs between all ionic species. Its analytic
simplicity allows the study of electrokinetic phenomena such
as the EF effect on self-diffusion and collective diffusion for
nonzero concentrations.
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